FAR BEYOND

MAT122

Chain Rule

Review – Composition of Function

Given:
$$f(x) = \sqrt{x}$$
 $g(x) = x^2 + 1$ find $f(g(x))$

$$= f(x^2 + 1)$$
plug $g(x)$ into $f(x)$ to get composed function:
$$= \sqrt{x^2 + 1}$$
 then $g = x^2 + 1$ is inner function and $f = \sqrt{x}$ is outer function

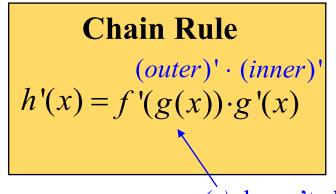
Given:
$$h(x) = (x^3 - 1)^{100}$$
 if $h(x) = f(g(x))$ determine $f(x)$ and $g(x)$ $g = x^3 - 1$ is inner function so $f = x^{100}$ is outer function

Tip: Pick an *inner* function such that the *outer* function has a SIMPLE derivative.

Differentiating Composed Functions

must take the derivative of BOTH inner and outer functions

if h(x) is in the format f(g(x)) then $h'(x) = f'(g(x)) \cdot g'(x)$



g(x) doesn't change here

$$\therefore h'(x) = f'(g) \cdot g'$$

$$= \frac{1}{2\sqrt{x^2 + 1}} \cdot 2x$$
combine into single fraction

ex: $h(x) = \sqrt{x^2 + 1}$

inner
$$g = x^2 + 1$$
 $f = \sqrt{x}$

$$g' = 2x$$
 $f' = \frac{1}{2\sqrt{x}}$

$$f'(g) = \frac{1}{2\sqrt{x^2 + 1}}$$

Chain Rule with u-Substitution

ex. differentiate $h(x) = (x^3 - 1)^{100}$

then
$$h = u^{100}$$

and
$$h' = (u^{100})' \cdot u'$$

$$=100u^{99}(\cdot u')$$

convert back to
$$x = 100(x^3 - 1)^{99} \cdot 3x^2$$

combine factors
$$= 300 x^2 (x^3 - 1)^{99}$$

Chain Rule

$$h'(x) = f'(g(x)) \cdot g'(x)$$

define inner function as u: $u = x^3 - 1$

$$u' = 3x^2$$

re-visit:
$$h(x) = \sqrt{x^2 + 1}$$
 $u = x^2 + 1$ $u' = 2x$

$$h' = \left(\sqrt{u}\right)' u'$$

$$= \frac{1}{2\sqrt{u}} u'$$

$$= \frac{1}{2\sqrt{x^2 + 1}} \cdot \frac{2x}{\sqrt{x^2 + 1}} = \frac{x}{\sqrt{x^2 + 1}}$$

Chain Rule - examples

ex. find
$$\frac{dy}{dx}$$
 of $y = e^{2x}$

$$= e^{u}$$
recall $(e^{u})' = e^{u}$

$$\frac{dy}{dx} = e^{u} \cdot \frac{du}{dx}$$

$$= 2e^{u}$$

$$\frac{du}{dx} = 2e^{u}$$

$$u = 2x$$

$$\frac{du}{dx} = 2$$

Chain Rule

 $(outer)' \cdot (inner)'$

$$h'(x) = f'(g(x)) \cdot g'(x)$$

Product Rule

$$y' = f'g + fg'$$

$$f = (1-x)$$
 $g = (1-x)$
 $f' = -1$ $g' = -1$

ex. find y' of $y = (1-x)^2 = u^2$

Chain Rule:

$$u = 1 - x$$

$$y' = 2u \cdot u'$$

$$u' = -1$$

$$= 2(1 - x) \cdot (-1)$$

$$= -2(1 - x)$$

Product Rule:

$$y = (1-x)(1-x)$$

$$y' = -1(1-x) + (1-x)(-1)$$
 combine like terms
$$= -2(1-x)$$

Practice

Do: find
$$y'$$
 of $y = e^{-x}$

$$=-e^{-x}$$

Do: find y' of
$$y = e^{kx}$$
 where k is a constant

$$=ke^{kx}$$

Chain Rule

$$(outer)' \cdot (inner)'$$

$$h'(x) = f'(g(x)) \cdot g'(x)$$

More Chain Rule Examples

ex. find
$$f'(x)$$
 when $f(x) = \frac{1}{\sqrt[3]{x^2 + x + 1}} = (x^2 + x + 1)^{-1/3}$

$$u = x^2 + x + 1$$
$$u' = 2x + 1$$

$$f'(x) = \left(u^{-1/3}\right)' \cdot u'$$

$$=-\frac{1}{3}u^{-4/3}\cdot u'$$

$$= -\frac{1}{3}(x^2 + x + 1)^{-4/3} (2x + 1)$$

write as single fraction with a radical

$$=-\frac{2x+1}{3(x^2+x+1)^{+4/3}}$$

$$= -\frac{2x+1}{3\sqrt[3]{(x^2+x+1)^4}}$$

Chain Rule

$$h'(x) = f'(g(x)) \cdot g'(x)$$

Chain Rule with Product Rule

product rule

ex. find y' of
$$y = (2x+1)^5 x^4$$

$$f = \underbrace{(2x+1)^5}_{\text{chain rule}}$$

$$= u^5$$

$$u = 2x+1$$

$$= u^5$$

$$u' = 2$$

$$g = \boxed{x^4}$$

$$g' = \boxed{4x^3}$$

$$g = x^4$$

$$g' = 4x^3$$

$$f' = 5u^{4} \cdot u'$$

$$= 5(2x+1)^{4} \cdot 2$$

$$= 10(2x+1)^{4}$$

$$f'' g + f g''$$

$$y' = 10(2x+1)^4 \cdot x^4 + (2x+1)^5 \cdot 4x^3$$

$$= 10x^4 (2x+1)^4 + 4x^3 (2x+1)^5$$

Chain Rule with Quotient Rule

ex: find derivative of
$$g(t) = \left(\frac{t-2}{2t+1}\right)^9$$
 $u = \frac{t-2}{2t+1} \frac{f}{g}$ $f = t-2$ $g = 2t+1$ $g' = 2$ quotient rule

$$\therefore g'(t) = \left(u^9\right)' \cdot u'$$

$$= 9u^8 \cdot u'$$

$$= 9\left(\frac{t-2}{2t+1}\right)^8 \cdot \frac{5}{(2t+1)^2}$$

$$= 9\left(\frac{t-2}{2t+1}\right)^8 \cdot \frac{5}{(2t+1)^2}$$

$$= 9\frac{\left(t-2\right)^8}{\left(2t+1\right)^8} \cdot \frac{5}{\left(2t+1\right)^2}$$

$$= \frac{2t+1-2t+4}{(2t+1)^2}$$

$$= \frac{2t+1-2t+4}{(2t+1)^2}$$

$$= \frac{45(t-2)^8}{(2t+1)^{10}}$$

$$= u' = \frac{5}{(2t+1)^2}$$

$$u' = \frac{5}{(2t+1)^2}$$

$$u = \frac{t-2}{2t+1} \frac{f}{g}$$
quotient rule

$$f = t - 2$$
 $g = 2t + 1$
 $f' = 1$ $g' = 2$

$$u' = \frac{(1)(2t+1) - 2(t-2)}{(2t+1)^2}$$

$$= \frac{2t+1-2t+4}{(2t+1)^2}$$

$$u' = \frac{5}{(2t+1)^2}$$